Get data as Dataframe

>>> df = mf.get_scheme_historical_nav("119597",as_Dataframe=True)
>>> print(df)
                 nav
date
20-10-2021  82.30800
19-10-2021  83.97800
18-10-2021  85.41100
...              ...

Get data as JSON

>>> data = mf.get_scheme_historical_nav("119597",as_json=True)
>>> print(data)
{'fund_house': 'xxxxxxxxxxxxx',
 'scheme_type': 'Open Ended Schemes',
 'scheme_category': 'Debt Scheme - Banking and PSU Fund',
 'scheme_code': 119597, 'scheme_name': 'xxxxxxxxxxxxx  - Direct Plan-Dividend',
 'scheme_start_date': {'date': '02-01-2013', 'nav': '103.00590'},
 'data': [{'date': '16-08-2019', 'nav': '149.33110'},
                  {'date': '14-08-2019', 'nav': '149.08090'},
                  {'date': '13-08-2019', 'nav': '149.45110'},
                  {'date': '09-08-2019', 'nav': '149.42480'},
                  .
                  .
                  .
                 ]
}

Note : Output has been truncated for better legibility.

Alternative, view historical data with one day change

>>> df = mf.history('0P0000XVAA',start=None,end=None,period='3mo',as_dataframe=True)
>>> print(df)
                nav     dayChange
date
03-08-2021  78.269997        NaN
04-08-2021  77.545998  -0.723999
05-08-2021  77.081001  -0.464996
06-08-2021  77.349998   0.268997
.
.

Note : To use mf.history(), we have to use new scheme codes presented here 

I BUILT MY SITE FOR FREE USING