Get data as Dataframe
>>> df = mf.get_scheme_historical_nav("119597",as_Dataframe=True) >>> print(df) nav date 20-10-2021 82.30800 19-10-2021 83.97800 18-10-2021 85.41100 ... ...
Get data as JSON
>>> data = mf.get_scheme_historical_nav("119597",as_json=True) >>> print(data) {'fund_house': 'xxxxxxxxxxxxx', 'scheme_type': 'Open Ended Schemes', 'scheme_category': 'Debt Scheme - Banking and PSU Fund', 'scheme_code': 119597, 'scheme_name': 'xxxxxxxxxxxxx - Direct Plan-Dividend', 'scheme_start_date': {'date': '02-01-2013', 'nav': '103.00590'}, 'data': [{'date': '16-08-2019', 'nav': '149.33110'}, {'date': '14-08-2019', 'nav': '149.08090'}, {'date': '13-08-2019', 'nav': '149.45110'}, {'date': '09-08-2019', 'nav': '149.42480'}, . . . ] }
Note : Output has been truncated for better legibility.
Alternative, view historical data with one day change
>>> df = mf.history('0P0000XVAA',start=None,end=None,period='3mo',as_dataframe=True) >>> print(df) nav dayChange date 03-08-2021 78.269997 NaN 04-08-2021 77.545998 -0.723999 05-08-2021 77.081001 -0.464996 06-08-2021 77.349998 0.268997 . .
Note : To use mf.history(), we have to use new scheme codes presented here