
Get data as Dataframe
>>> df = mf.get_scheme_historical_nav("119597",as_Dataframe=True)
>>> print(df)
nav
date
20-10-2021 82.30800
19-10-2021 83.97800
18-10-2021 85.41100
... ...Get data as JSON
>>> data = mf.get_scheme_historical_nav("119597",as_json=True)
>>> print(data)
{'fund_house': 'xxxxxxxxxxxxx',
'scheme_type': 'Open Ended Schemes',
'scheme_category': 'Debt Scheme - Banking and PSU Fund',
'scheme_code': 119597, 'scheme_name': 'xxxxxxxxxxxxx - Direct Plan-Dividend',
'scheme_start_date': {'date': '02-01-2013', 'nav': '103.00590'},
'data': [{'date': '16-08-2019', 'nav': '149.33110'},
{'date': '14-08-2019', 'nav': '149.08090'},
{'date': '13-08-2019', 'nav': '149.45110'},
{'date': '09-08-2019', 'nav': '149.42480'},
.
.
.
]
}Note : Output has been truncated for better legibility.
Alternative, view historical data with one day change
>>> df = mf.history('0P0000XVAA',start=None,end=None,period='3mo',as_dataframe=True)
>>> print(df)
nav dayChange
date
03-08-2021 78.269997 NaN
04-08-2021 77.545998 -0.723999
05-08-2021 77.081001 -0.464996
06-08-2021 77.349998 0.268997
.
.Note : To use mf.history(), we have to use new scheme codes presented here